High Temperature Gas-Cooled Reactors—Now More Than Ever!

Dr. Finis SOUTHWORTH
Chief Technology Officer
AREVA Inc.

On behalf of the NGNP Industrial Alliance, LLC

Washington DC Section ANS
Rockville, MD
April 12, 2011
What is NGNP?
What is the NGNP Alliance? – 2006-present
EPACT 2005 and NGNP activities to date
HTR / NGNP design description
Economics of HTRs
Safety characteristics
A little more about Fukushima Daiichi topics
Q&A
Next Generation Nuclear Plant History

Next Generation – Generation IV

Generation IV Roadmap – December 2000 to September 2002

VHTR Selected as lead concept for US Demonstration -
- New missions of hydrogen production and process heat applications
- Most passively safe of all candidate Generation IV reactor concepts

EPACT required 31 months to pass-- August 8, 2005, authorizing “$1.5 Billion through 2014, and such sums as may be needed subsequently for construction”

EPACT 2005 called for DOE to partner with an Industry Alliance to partner for the demonstration and deployment of the NGNP.

The NGNP Industrial Alliance was first formed in May 2006.
- Mission -

"To work with Government to commercialize High Temperature Gas-cooled Reactor technology, expanding the use of clean nuclear energy and significantly reducing the dependence on premium fossil fuels."

Communications & Strategy Committee
Recommend the following:
Keith Betton / Peter Molinaro – Dow Chemical
Alison Graves / George O’Connor – Entergy
Mark Haynes – Concordia Power

Management Working Committee:
Finis Southworth – AREVA
Fred Moore – Dow Chemical
Don Haller – ConocoPhillips
TBD – Eastman Chemical
John Mahoney – Entergy
Phil Hildbrandt – BEA INL
Layla Sandell – Westinghouse
James Hoobs – B&W

Executive Director (Chair)
Communications & Strategy
End User Industry
Equip. Vendors / Nuclear System Supply Teams
Investors/Others
National Laboratories
Nuclear Owner / Operators
Universities

Executive Director Elect (Vice Chair)
Nominating Committee (Elections)
Ethics
Membership

Special Committees are set up as needed for a specific purpose or to fulfill the requirements set forth in the Bylaws

Standing Committees serve to meet the objectives and fulfill the obligations of the Alliance
HTR Design
ANTARES

- SIMPLE
- LOW COST
- COMBINED BRAYTON AND RANKINE CYCLES FOR HIGH EFFICIENCY
- PASSIVELY SAFE
- SUPPORTS H₂ PRODUCTION
Key Features of AREVA Near-Term

- Prismatic block annular core
- Conventional steam cycle
- Modular reactors
- Inherent safety characteristics
 - Passive decay heat removal
 - Large thermal inertia
 - Negative reactivity feedback
- Minimal reliance on active safety systems
- Sized to minimize steam production cost
- Fully embedded reactor building
 - Partially embedded alternative possible
Nominal Operating Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fuel type</td>
<td>TRISO particle</td>
</tr>
<tr>
<td>Core geometry</td>
<td>102 column annular</td>
</tr>
<tr>
<td></td>
<td>10 block high</td>
</tr>
<tr>
<td>Reactor power</td>
<td>625 MWt</td>
</tr>
<tr>
<td>Reactor outlet temperature</td>
<td>750°C</td>
</tr>
<tr>
<td>Reactor inlet temperature</td>
<td>325°C</td>
</tr>
<tr>
<td>Primary coolant pressure</td>
<td>6 MPa</td>
</tr>
<tr>
<td>Vessel Material</td>
<td>SA 508/533</td>
</tr>
<tr>
<td>Number of loops</td>
<td>2</td>
</tr>
<tr>
<td>Steam generator power</td>
<td>315 MWt (each)</td>
</tr>
<tr>
<td>Main circulator power</td>
<td>4 MWe (each)</td>
</tr>
<tr>
<td>Main steam temperature</td>
<td>566°C</td>
</tr>
<tr>
<td>Main steam pressure</td>
<td>16.7 MPa</td>
</tr>
</tbody>
</table>
Annular Core Arrangement

- Replaceable Reflector
- Permanent Reflector
- Fuel Columns
- Metallic Core Barrel
- Control Rods
- Reserve Shutdown Channels
Cooling Systems Optimized for Reliability, Safety

- Main heat transport system
 - Established helical coil steam generator technology
 - Electric motor circulator with magnetic bearings
- Shutdown cooling system
 - Active system
 - Maximizes plant availability
 - Maintenance
 - Rapid accident recovery
- Reactor cavity cooling system
 - Safety related heat removal system
 - Passive cooling of vessel and surrounding cavity (operates continuously – safety-related)
 - Active cooling of water storage tank during normal operation (non-safety)
The Dow Perspective
About Dow

- Diversified chemical company, harnessing the power of science and technology to improve living daily
- Founded in Midland, Michigan, in 1897
- Supplies more than 5,000 products to customers in 160 countries
- Annual sales of $45 billion
- 52,000 employees worldwide
- Committed to Sustainability
Dow Energy Uses

- Feedstock
 - Ethane, Propane
 - Butane, Naphtha

- Steam
- Power

900,000 BBL Oil Eqiv / Day
Or 0.3% of the World’s Energy

600 trillion Btu/yr
Dow Energy Plan

Four fundamentals make the transition to a sustainable energy future possible.

- Aggressively pursue energy efficiency and conservation
- Increase, diversify and optimize hydrocarbon energy and feedstock supplies
- Accelerate development of alternative and renewable energy and feedstock sources

Finally, Dow supports the federal government’s efforts to provide financial support to enable leadership in advancing development of new nuclear power technologies. One promising example is the High Temperature Gas Reactor (HTGR), which has the potential to produce synthetic fuels and feedstocks when combined with gasification of coal or other domestic carbon sources.

- Transition to a low carbon economy
Power, Heat & Steam Generation

- 4 GWs of self generated electricity
- More than 22 million pounds per hour of self generated steam
- Enormous direct fired process heating loads
Why HTGR?

- Inherent safety – co location
- N-X reliable process heat & electricity
- Neutral cost without cost of carbon
- Addresses all key energy policy issues
 - Energy security
 - Carbon footprint
 - National security
 - Jobs
INL Economics Analysis of NGNP
HTGR Layout For SAGD Integration Modeling

HTGR 600 MWt Core

750°C

IHX or SG

Steam Generator

310°C (10 MPa) Steam to Well Pairs

322°C

230°C

750°C

700°C

Rockville, MD April 12, 2011

p.19

Copyright AREVA Inc.
In US coal for electricity and oil for transportation produce about 3/4 of the man-made CO₂

Substitution of electricity from nuclear for coal and hydrogen from nuclear for oil would reduce CO₂ release by 2/3

Process heat from nuclear could eventually replace the remaining 1/3
INL Plant Capital Cost Development

HTGR NOAK Plant Capital Cost as a Function of Module and Plant Ratings

750 C Reactor Outlet Temperature

<table>
<thead>
<tr>
<th>Module Ratings</th>
<th>Capital Cost, $/KWt</th>
</tr>
</thead>
<tbody>
<tr>
<td>200 MWe</td>
<td></td>
</tr>
<tr>
<td>350 MWe</td>
<td></td>
</tr>
<tr>
<td>600 MWe</td>
<td></td>
</tr>
</tbody>
</table>

Rockville, MD April 12, 2011

Copyright AREVA Inc.
Assuming a central HTGR facility supplying 2,400 MWt of steam:

- Bitumen recovery of 224,000 barrels per day
- Reduction in natural gas consumption – 81.8 billion SCF/year
- Reduction in CO$_2$ emissions – 5.3 million tons/year

Over 60 years this rate of steam supply from the HTGR plant would result in:

- Supplying 52 simultaneous well pads for 12 years each
- Supplying 260 well pads over the life of the reactors
- Covering 65,200 hectares of land
- Reducing natural gas consumption by 4.9 trillion SCF
- Reducing CO$_2$ emissions by 317 million tons

Estimate the potential for 15 plants (60 – 600 MWt modules)
Characteristics of Potential Markets, cont’d

Products & Markets, cont’d

- **Process Heat, Hydrogen & Oxygen**
 - Petro-chemical, Fertilizer, Refining (in addition to co-generation, e.g., cracking operations, direct ammonia production, hydrogenation)
 - Merchant Hydrogen – 5.4MMtons (2005), separate from refining industry production and usage of hydrogen
 - CTL/BTL (24 new 100,000 bpd plants)
 - Synthetic feedstock, transportation fuels (assumed that production would equal 25% of crude oil imports in 2008)

- **Electricity**
 - Substitute for Coal & Natural Gas Plants
 - Emissions reductions & saving natural gas resource
Size of the potential market

- **Petrochemical, Refining, Fertilizer/Ammonia market and other**
 - Co-generation
 - 75 GWt (125 – 600 MWt modules)
- **Oil Sands**
 - Steam, Electricity & Hydrogen
 - 36 GWt (60 – 600 MWt modules)
- **Hydrogen Merchant Market**
 - 40 GWt (67 – 600 MWt modules)
- **Synthetic Fuels & Feedstock**
 - Steam, electricity, hydrogen
 - 249 GWt (415 – 600 MWt modules)
- **Electricity**
 - 110 GWt; ~180 – 600 MWt modules
 - 10% of the nuclear electrical supply increase required to achieve pending
 Government objectives for emissions reductions by 2050

The Opportunity — Integrating Nuclear High Temperature Process Heat with Industrial Applications

- **170 plants in U.S.**
- **93 plants in China**
- **37 new plants**

170 plants — Assumptions 25% Penetration of Potential Process Heat & Power Market – 2.7 quads

- **NH3 production**
- **Coal-to-Liquids** (24 – 100,000 bpd new plants)
- **Oil Sands/Shale** (23 – 56,000 bpd plants)

* Quad = 1x10¹² Btu (293 x
10⁸ MWt) annual energy consumption
Economics Supplying Steam & Electricity

Equivalent Natural Gas Prices
(Maximum # of Modules)
200 MWt / 1600 MWt -- $10.8/MMBtu
350 MWt / 1400 MWt -- $8.3/MMBtu
600 MWt / 2400 MWt -- $6.8/MMBtu
HTR Safety – A quick review
Safety Functions in NPPs

Fig. 1. Classes of safety functions.
Safety Functions in HTGRs

Fig. 1. Classes of safety functions.
Safety Functionality for NPPs

• Anticipated Operational Occurrences accommodated with high reliability

• Design Basis Events – Natural Phenomena (hurricanes, tornadoes, earthquakes, floods, et cetera) as well as postulated faults accidents (LOCA, MSLB, etc.) Meet PAGs at EAB. NGNP is intended to be designed to meet PAGs at 400 meters.

• Beyond Design Basis Events – Severe Accidents – not important how you got here, its how you manage it and isolate it. (e.g. FD1 earthquake, tsunami-both worse than design basis) FD1 survived the beyond design basis earthquake well, it appeared. It is the BDBE tsunami that stopped the safety related equipment.
Safety Functionality for LWR v. HTGR

LWR BDBE management
- must have A/C to manage the accident
- decay heat removal must start within about 30-40 minutes to prevent core damage
- maintain primary containment integrity—in severe accident vent to atmosphere or secondary containment—use hydrogen igniter or recombiner
- maintain spent fuel pool cooling—could be done by a hose from a non-electric source—fire water tower, fire truck, etc.—just need to make up for boiling

HTGR BDBE management
- decay heat removal must start in about 100 hours
- heat would transfer to earth by conduction, radiation and convection (passive) for the reactor vessel.
Applicable Frequency Ranges of Regulatory Criteria
Why HTGR?

- Inherent safety – co location
- N-X reliable process heat & electricity
- Neutral cost without cost of carbon
- Addresses all key energy policy issues
 - Energy security
 - Carbon footprint
 - National security
 - Jobs
Fukushima Impact on New Builds

As a result of the Fukushima crisis, China has announced a hold on approvals for new projects, but this is not expected to affect projects already approved or under way.

- Four AP1000s are under construction in China—two at Haiyang and two more at Sanmen. The first of these are to begin operation by mid-2013.

- Eighteen CPR-1000s, developed from a French 900-megawatt pressurized water reactor, are also being built, as well as
 - Two AREVA EPRs, and
 - Three indigenously designed CNP-600 units.
 - Two HTR-PM?
Fukushima Near-term Actions

As a result of the Fukushima crisis, Near Term NRC Reviews

► verifying each plant’s capability to manage major challenges, such as aircraft impacts and losses of large areas of the plant due to natural events, fires or explosions

► verifying each plant’s capability to manage a total loss of off-site power

► verifying the capability to mitigate flooding and the impact of floods on systems inside and outside the plant

► performing walk-downs and inspection of important equipment needed to respond successfully to extreme events like fires and flood.