

A Secure Global Supply of Mo-99 and Tc-99m

Ira N. Goldman

Senior Director, Global Strategic Supply and Government Relations Lantheus Medical Imaging May 2017

Outline

- Nuclear Medicine
- International Mo-99 supply chain (HEU vs. LEU)
- North American Supply Matrix
- Future Mo-99 Supply Chain
 - U.S. Domestic Projects
 - S.99 and DOE Cooperative Projects
 - Other U.S. non-HEU projects
 - International Mo-99 supply developments
 - Europe
 - ROW
 - Canada NISP/ITAP
- Conversion to LEU and LEU Generator
- Full Cost Recovery
- Mo-99/Tc-99m Supply/Demand
- Summary
- Lantheus Medical Imaging

Nuclear Medicine

- Short-lived radioisotopes
 - -Bond (label) to chemical compounds (pharmaceuticals) with affinity to particular organs
 - -Heart, bones, thyroid, liver, brain
 - -Injection, oral, or inhalation

Diagnosis (imaging): functional vs. structural

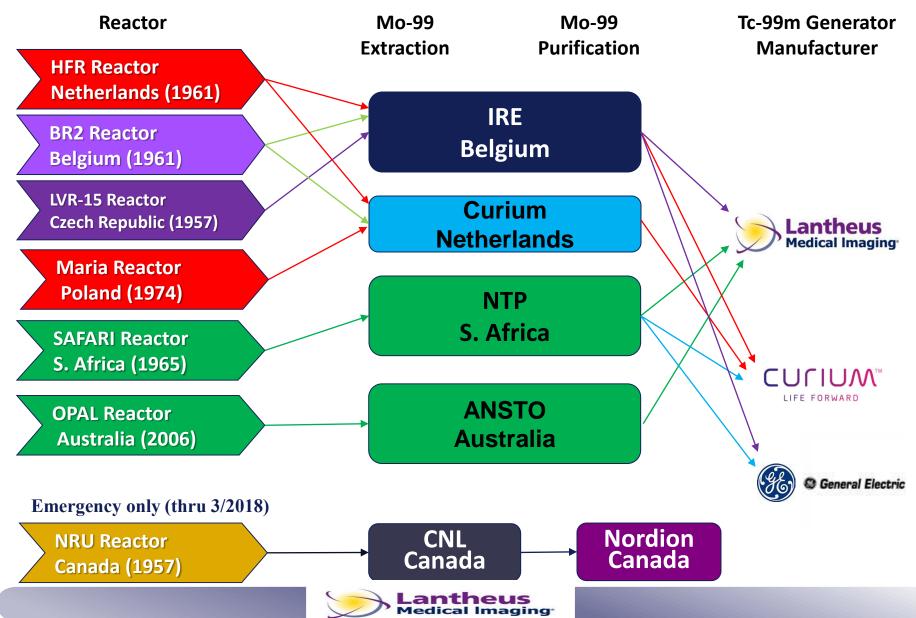
- SPECT: Tc-99m (myocardial perfusion; 140 KeV gamma), Xe-133 (PE/lung ventilation)
- –PET: F-18 (109 min ½ life; positron; cyclotron), Ga-68 oncology/tumor imaging, generator

Therapy (targeted, short-radius kill)

- I-133 (beta), Ra-223 (alpha); Y-90 (beta; radioembolization), Lu-177 (beta/gamma); Sm-153 (palliative)
- Mo-99 (reactor-produced; 66 hr 1/2 life) parent Tc-99m (6 hr 1/2 life)
- Tc-99m used in over 80% 35+M NM procedures worldwide
 - 15M U.S. NM procedures (40-50% cardiac; 35-40% oncology)

TechneLite® Technetium Tc99m Generator

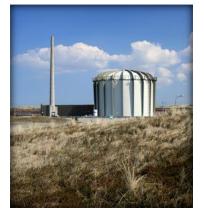
- Sodium pertechnetate Tc-99m
 - used in preparation of FDA-approved diagnostic radiopharmaceuticals,
- Sodium Pertechnetate Tc-99m Injection is used directly for:
 - Thyroid Imaging
 - Salivary Gland Imaging (Adults only)
 - Urinary Bladder Imaging (direct isotopic cystography) for the detection of vesico-ureteral reflux.
 - Nasolacrimal Drainage System Imaging (Adults only)
- Low-Enriched Uranium (LEU) Mo-99 for use in the manufacture of TechneLite[®] approved by FDA in 2010
 - <u>first Tc-99m generator in US containing ≥ 95</u> <u>percent LEU</u> sourced molybdenum-99 (Mo-99)



SAFARI (South Africa)

Mo-99 Supply Chain Reactors & Processors

Mo-99 TARGETS: LEU – ANSTO/OPAL, NTP/SAFARI HEU – Mallinckrodt w/HFR, MARIA, IRE w/BR2, HFR, LVR-15, NRU


Mo-99 Supply Chain

Major Mo-99 Reactors

SAFARI, NTP, Pelindaba

HFR, NRG, Petten

Opal, ANSTO, Sydney

BR2, SCK-CEN, Mol

LVR-15, UJV, Rez

MARIA, Polatom, Swierk

LEU Mo-99

•NTP (South Africa)

~2500 - 3000 6-day Ci/week; mostly LEU

ANSTO Health (Australia)

•Existing plant: 1800-2250 6-day Ci week (all-LEU) •New facility: 3500 6d Ci/week - late 2017

SAFARI, NTP, Pelindaba

Opal, ANSTO, Sydney

NRU Status

• NRU reactor ceased regular Mo-99 production October 31, 2016

- NRU continues to operate until March 31, 2018; thereafter will be decommissioned
- NRU and Nordion maintain stand-by capability to restart Mo-99 production in the unlikely event of a Mo-99 shortage
 - back-up production last resort among a range of possible mitigation strategies

Government of Canada prepared to activate back-up capability

 Communications protocol with AIPES regarding international supply situation

DOE Cooperative Agreements Non-HEU Mo-99

- American Medical Isotopes Production Act of 2012 (AMIPA/S.99)
- U.S. Domestic Projects: 4 active DOE/NNSA cooperative grants (non-HEU projects)
 - SHINE accelerator-driven LEU solution fission process; 2020 (financing dependent)
 - Lantheus supply agreement (October 24, 2014); also GE agreement
 - Received NRC construction permit approval (Feb. 25, 2016)
 - Northstar 2 grants: Mo-98 neutron activation at MURR (now) and accelerators w/Mo-100 (later); both LSA using Radiogenix Tc-99m generator - awaiting FDA approval
 - Nordion/MURR/ General Atomics: Selective Gas Extraction; 2H2018 (licensing dependent)

Other U.S. Projects (non-HEU)

NON-DOE PROJECTS

- Northwest Medical Isotopes: Columbia, MS fission w/1 or more reactors
- Niowave: Lansing, MI superconducting accelerator w/traditional target
- Coqui Radiopharmaceuticals: fission (financing dependent)
- Several other fission-based projects and LSA approaches
 - Eden, PermaFix, Flibe, others
- **TERMINATED DOE PROJECTS**
- GE Hitachi-Clinton power reactor, neutron activation inactive
- Babcock & Wilcox MIPS aqueous LEU solution reactor inactive

International Mo-99 Supply Developments

•IRE and Curium conversion to LEU targets – late 2017

Nuclear Security Summit 2012 commitment

Belgium, Netherlands, France, U.S.

- IRE late-2017 commercial LEU supply
- Curium end of 2017 LEU conversion

New European Research Reactors (LEU targets)

FRM II Reactor – 2H2019

• Jules Horowitz Reactor (replace Osiris) – 2022?

Pallas Reactor (replace HFR) – 2024 (financing?)

MYRRHA (replace BR2) – 2024 (financing?)

•ANM Australia (3600 Ci/week LEU) late 2017 – key project

FRM2 Reactor (Munich, Germany)

Jules Horowitz Reactor (Cadarache, France)

Courtesy of CEA (French Atomic Energy Commission), Cadarache Center

International Mo-99 Supply Developments

Russia – Isotope, Karpov and RIAR (HEU/LEU 2018?)

South Korea – new RR, fission 2022 (LEU)

Brazil – new reactor & processing, 2024 (LEU)

Argentina – new reactor & processing, 2020 (LEU)

Canada: Non-Reactor Technologies

- Cyclotron-produced Tc-99m (Direct Tc-99m)
 - 19 MeV PET Cyclotrons (TRIUMF, BCCA, London)
 - 24 MeV Cyclotron (ACSI, Edmonton, Sherbrooke)
- Mo-99 via accelerator production
 - Prarie Isotopes (PIPE)
- NISP \$25M (2011-12); ITAP \$30M (2013-16)
- Proof of principle demonstrated
- Health Canada required clinical trial (pertechnetate thyroid imaging) underway
- Business model competitive w/Tc-99 generator?
 - COGs, production rates, and price per dose
 - Cost comparison may be site dependent

LEU Conversion Global Threat Reduction Initiative (GTRI)

- GTRI/Convert goal is to minimize or eliminate the use of Highly Enriched Uranium (HEU) in civil nuclear applications
 - "Atoms for Peace": U.S. and USSR provided research reactors HEU fuel to support development of peaceful uses of nuclear energy
 - HEU has optimal properties for research reactor fuel and medical isotope irradiation targets (high neutron flux)
 - HEU directly usable in a nuclear weapon (Hiroshima-type)
 - LEU conversion efforts started in late 1970's
 - Reduced Enrichment for Research and Test Reactors (RERTR)
 - Post-9/11 impetus to secure weapons-usable, high-risk nuclear materials; GTRI formed in 2004, U.S.- led international initiative
 - White House/NSC priority: OSTP w/DOE, CMS, other Federal agencies
 - Nuclear Security Summits: Washington (2010); Seoul (2012);
 The Hague (2014), Washington (2016)

U.S. Government Actions and Programs

Executive Branch and Congressional Actions - GTRI (Convert):

- American Medical Isotope Production Act of 2011 (AMIPA/S.99) January 2, 2013⁴
 - Supports development of non-HEU domestic Mo-99/Tc-99m production
 - Establishes DOE fee-based, uranium lease and waste take-back program
 - Waste for which there is no commercial disposition pathway
 - Phase-out HEU exports for medical isotope production over seven years

HEU Exports

- Reduce exports of HEU that are used for medical isotope production as sufficient supplies of non-HEU-produced Mo-99 are available to the global marketplace
 - HEU exports for medical isotope production made on an annual basis

Veterans Administration LEU preference policy⁵

- January 3, 2014, Department of Veteran's Affairs issued policy memorandum
- VA facilities to preferentially procure non-HEU based Mo-99/Tc-99m radiopharmaceutical products as they become commercially available

⁴http://www.asrt.org/main/standards-regulations/regulatory-legislative-news/2013/01/01/congress-passes-medicalisotope-production-act

⁵http://www.hcnmc.org/wp-content/uploads/2014/03/Staples.pdf

CMS Rationale/Intent Non-HEU Payment Adjustment Policy

- CMS (Medicare) established a Payment Adjustment Policy for Radioisotopes Derived from Non-HEU Sources⁶
 - CY2013 Outpatients/HOPPS (NOT for physician offices)
- Adjustment necessary to ensure equitable payments AND the cost of hospital conversion to non-HEU sources to obtain radioisotopes used in medical imaging
- Covers the marginal cost of radioisotopes produced from non-HEU sources over costs of HEU produced radioisotopes

- Includes industry transition (especially research reactors) to Full Cost Recovery

- CMS non-HEU derived Tc-99m is defined as: "Tc-99m that is at least 95% derived from a non-HEU molybdenum source"
- <u>CMS reimburses \$10 per dose for non-HEU derived Tc-99m dose</u>
- Continued in 2014, 2015, 2016, and 2017

⁶Federal Register /Vol. 77, No. 221 /Thursday, November 15, 2012 /Rules and Regulations 68321

OECD/Full Cost Recovery

- OECD/NEA became involved in global efforts to ensure a reliable supply of ⁹⁹Mo and ^{99m}Tc at request of member countries
- NEA established the High-level Group on the Security of Supply of Medical Radioisotopes (HLG-MR) in 2009
- HLG-MR includes experts from governments of major medical isotope producing and consuming countries, the European Commission, the Euratom Supply Agency and the IAEA
- OECD/NEA published a series of reports beginning in 2010:
 - "The Supply of Medical Radioisotopes" (2010) an economic study
 - "The Path to Reliability" (2011) policy recommendations
- OECD "six principles:" Full Cost Recovery (esp. research reactors), Outage Reserve Capacity (by 2014), implementation by all parts of the supply chain
- Series of follow-up reports including supply/demand scenarios, implementation of recommendations

OECD Nuclear Energy Agency - http://www.oecd-nea.org/med-radio/supply-series.html

OECD/Full Cost Recovery

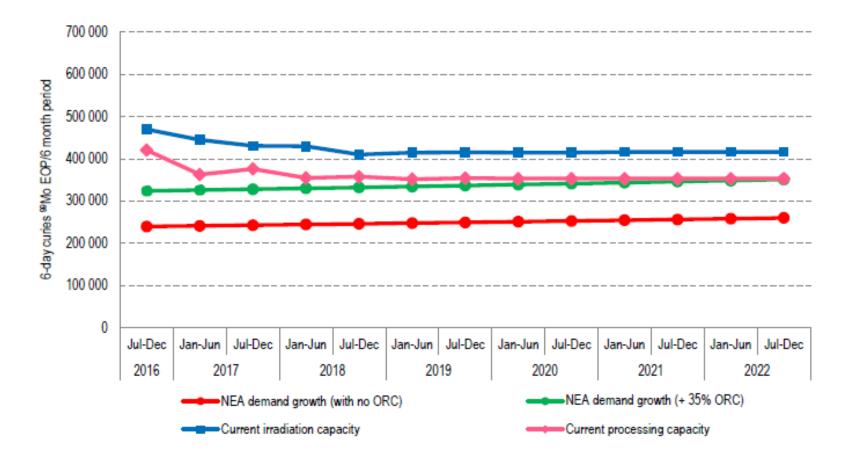
Full-cost recovery means:

- All costs associated with producing ⁹⁹Mo are identified and covered through the prices set for irradiation services
- Should include both operational and capital costs:
 - Easily identifiable direct costs
 - Allocated indirect costs
- Methodology provides guidance on how to proportion these costs to ⁹⁹Mo irradiation services, including indirect costs

Basic steps:

- Identify all costs at reactor/alternative technology facility
- Allocate direct costs for production
- Allocate indirect costs according to agreed methodology

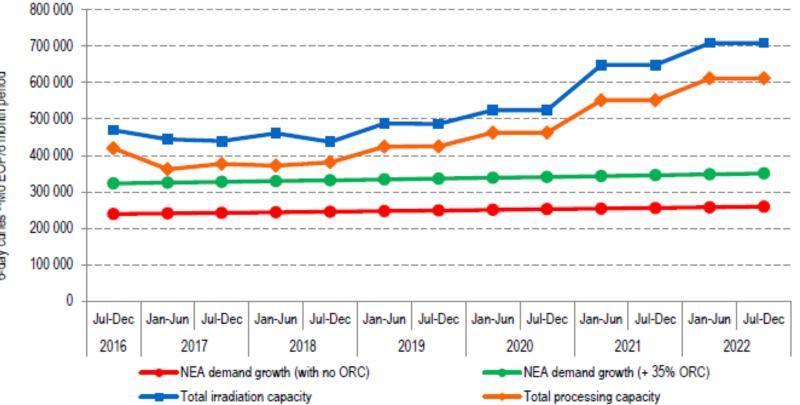
pavel.peykov@oecd.org


1st HLG-MR 21-23 January 2014

2

OECD Nuclear Energy Agency - http://www.oecd-nea.org/med-radio/supply-series.html

Mo-99 Supply/Demand Scenarios


Figure 4.1 Demand (9000 6-day Ci/week) EOP +35% ORC vs. current irradiation and processing capacity, 2017-2022: Scenario A)

Source: OECD Nuclear Energy Agency, "2017 Medical Isotope Supply Review," April 2017

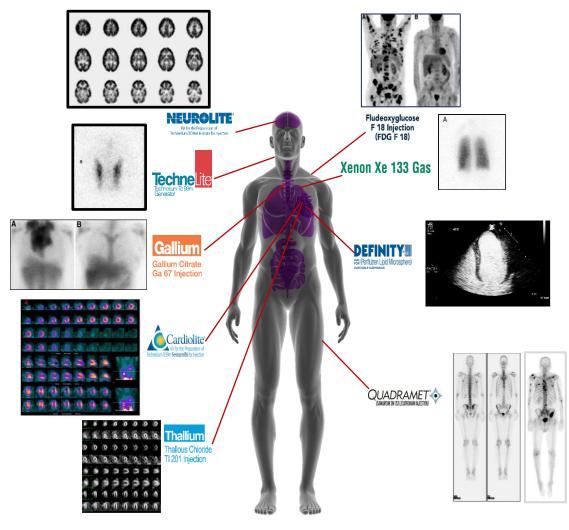
Mo-99 Supply/Demand Scenarios

Figure 6.1 Demand (9000 6-day Ci/week) EOP +35% ORC vs. total irradiation and processing capacity – projects delayed: Scenario C

Source: OECD Nuclear Energy Agency, 2016 Medical Isotope Supply Review, June 2016

Summary

- Reliable and secure post-2016 Mo-99 supply is achievable
- LEU/non-HEU technologies part of solution to assure future stable and reliable supply of medical radioisotopes
- LEU conversion, together with industry transition to Full Cost Recovery, results in increased costs in supply chain
- U.S. (S.99, CMS add-on, Veterans Adm) and international community committed to LEU/non-HEU Mo-99 supply
- LEU is already important part of global Mo-99 supply
- Further actions underway across the globe to assure future reliable supply and to establish LEU/non-HEU production



Lantheus Medical Imaging

	 Lantheus Holdings, Inc. (NASDAQ: LNTH) is the parent company of Lantheus Medical Imaging 	
Company Overview	 A global leader in innovative diagnostic medical imaging agents and products 	
	 Products used to diagnose coronary artery disease, congestive heart failure, stroke, peripheral vascular disease and other diseases 	
Headquarters	N. Billerica, Massachusetts	
Offices	Canada, Puerto Rico	
Global Presence	 ~400+ employees worldwide 	the second se
Commercial Products	• Ten	
	 Next-generation product candidates 	And Anna mantered and and
Development Pipeline	use Positron Emission Tomography	
	(PET) and Magnetic Resonance	
	Imaging (MRI)	

Lantheus - 60 Years of Innovation

Lantheus at-a-Glance

- Pedigree New England Nuclear (1956), Dupont, BMS Medical Imaging
- Global leader in diagnostic medical imaging
- Develop, manufacture and commercialize essential diagnostic imaging agents and products that help healthcare professionals identify disease and improve patient treatment and care
- Diversified portfolio serving Echocardiography and Nuclear Medicine specialties
 - Lead products include DEFINITY®, TechneLite® and Xenon
 - Dynamic pipeline contains promising next-generation imaging agents
- Worldwide distribution partnerships covering EU, APAC, and LatAm regions
- IPO in June 2015 (Ticker: LNTH)

Schematic for illustrative purposes only. Please see Indications and full Prescribing Information on product specific pages of Lantheus.com.

