Transportation of High-Level Radioactive Waste and Spent Nuclear Fuel in the Northeast

Uldis Vanags
Council of State Governments Eastern Regional Conference
Project Director
Northeast High-Level Radioactive Waste Transportation Task Force
Transporting Radioactive Waste

- NATIONAL/INTERNATIONAL
 - Past and Present Shipments
- Shipments in New England
- Planning for Commercial Spent Nuclear Fuel Shipments
NATIONAL/INTERNATIONAL SHIPMENTS

• The U.S. nuclear energy industry has completed more than 3,000 shipments of spent nuclear fuel over the past 40 years (Lanthrum NWTRB 6/13/18)

• Internationally, there have been more than 7,000 shipments of used fuel (over 80,000 metric tons) over many millions of kilometers by land and sea. (Lanthrum NWTRB 6/13/18)

• The U.S government has accepted up to 22,700 spent fuel assemblies from research reactors from 41 countries around the world and transporting them for interim storage at DOE facilities in South Carolina and Idaho.

• The majority of spent nuclear fuel and high-level waste shipped routinely from research and defense/naval facilities throughout the U.S. is sent to Idaho, South Carolina and Washington for storage.
Safety

• Although there have been accidents, none of those shipments have ever released any of their radioactive cargo, and there have been no injuries, fatalities, or environmental damage as a result of the spent nuclear fuel being shipped. (Lanthrum NWTRB 6/13/18)

• The accident risk associated with spent fuel shipments is more than three orders of magnitude less than for some other common of hazardous materials. (Lanthrum NWTRB 6/13/18)
Past and Present Transportation

• Department of Energy Office of Environmental Management (DOE-EM)

• National Nuclear Security Administration (NNSA)
Waste Isolation Pilot Plant, NM
WIPP
WIPP Facts

• First shipment of waste in March 1999.
• As of 2018 WIPP received 12,160 shipments. Sometimes as many as 35 per week.
• Loaded WIPP shipments traveled 14.5 million miles.
• Several minor accidents but no release of radioactive material.
WIPP Shipment
Repatriation of Nuclear Fuel
Shipping Solid and Liquid Highly Enriched Uranium (HEU > 20% U-235)
Shipping Cask for Solid and Liquid EU
Naval Spent Fuel Type B Shipping Containers

- Models M-140 and M-290:
 - Type B NRC/DOE Certified
 - At least 10” thick solid stainless steel
 - 350,000 and 520,000 pounds (loaded), respectively

- Thick, solid steel typically results in radiation levels much lower than the safe maximum DOT limits:

<table>
<thead>
<tr>
<th></th>
<th>DOT Limit</th>
<th>Naval Container</th>
<th>Typical Chest X-Ray</th>
</tr>
</thead>
<tbody>
<tr>
<td>On contact</td>
<td>200 mR/hr</td>
<td>1 to 5 mR/hr</td>
<td>10 mR</td>
</tr>
<tr>
<td>At 2 meters</td>
<td>10 mR/hr</td>
<td>.1 to .5 mR/hr</td>
<td></td>
</tr>
</tbody>
</table>

- Everyday life exposure to radiation:
 - ~300 mR/yr – soil, rocks, cosmic rays, radon
Transportation of SNF in New England

• Prior Shipments of SNF
• Shipping of large radioactive components during decommissioning
YANKEE ATOMIC HISTORICAL SPENT NUCLEAR FUEL ASSEMBLY SHIPMENTS

• A total of 51 shipments involving 333 spent fuel assemblies occurred in the 1960’s and 1970’s. There were 316 assemblies shipped in 34 rail shipments and 17 assemblies shipped by truck.

• The 34 rail shipments occurred between July 26, 1965 and May 26, 1971 and went to West Valley, NY for reprocessing. The rail shipments occurred during a 6-year period with approximately 1 shipment every 2 months.

• There were 8-10 assemblies per rail shipment using the Westinghouse ELC-102 rail cask (the cask weighed 73 tons fully loaded and was 13 ft long; 5 ¾ ft diameter).
CONNECTICUT YANKEE HISTORICAL SPENT NUCLEAR FUEL ASSEMBLY SHIPMENTS

• A total of 83 truck shipments involving 83 spent fuel assemblies occurred in the 1970’s and 1980.
• 80 shipments were made between January 13, 1972 to August 8, 1974 to Morris, Illinois and 3 shipments occurred between April 27, 1980 and May 12, 1980 that went to Battelle Columbus, Ohio for study (two later sent to Morris facility in a NLI-1/2 Truck Cask).
• The 1972-1974 shipments used the GE IF–200 single assembly truck cask (the cask weighed 25 tons and was 13 ft by 3.5 ft).
• There were an average of 2.5 shipments per month over the 30-month period.
Large Radioactive Components Shipped During Decommissioning
YANKEE ROWE REACTOR PRESSURE VESSEL TRANSPORT- 1997

Package Specifications

28 feet long x 13.5 feet in diameter
365 tons including saddle and tie-downs
RPV filled with low density grout
RPV encased inside container with grout

First-Of-A-Kind shipment of a very heavy, radioactive RPV by rail over 1,000 miles from MA to SC

Successful negotiation with 5 railroads: Guilford (old B&M), Canadian Pacific, Conrail, Norfolk Southern, and CSX
MAINE YANKEE REACTOR PRESSURE VESSEL TRANSPORT – 2003

MY RPV package included the RPV, its three-inch thick steel shipping container, and the transport cradle holding it and weighed about 1175 tons.

It was approximately 35 feet long and 19 feet in diameter.

The RPV package was welded to the transport cradle.

The package met the U.S. Department of Transportation radiological shipping requirements of <200 mR/hr on contact and <10 mR/hour at 2 meters.

The actual dose at 2 meters was approximately 1 mR/hour. All radioactive components included in the package were Class C or less in accordance with federal regulations.
CONNECCTICUT YANKEE REACTOR PRESSURE VESSEL TRANSPORT –2003

Reactor Pressure Vessel 383 tons

Low density concrete inside RPV 146 tons and between walls of RPV and shipping container

Steel shipping container 191 tons

Shipping cradle and tie down equipment 100 tons

Total RPV package weight = 820 tons
Length of RPV package = **35 feet**
Diameter of RPV package = **18 feet**
Future Shipments of Commercial Spent Nuclear Fuel
Future Yankee Rowe; Maine Yankee; Connecticut Yankee SNF Shipments Will Use a NAC International Transport Cask
NAC Dual-Purpose Canister System Schematic
NAC Transportation Cask For Multipurpose Canister (MPC)
FIGURE 2-12: NAC-STC PACKAGE (https://curie.ornl.gov/content/initial-site-specific-deinventory-report-maine-yankee)
Northeast Task Force

• Created in 1995
• Representatives from 10 Northeast States from Maine to Delaware
• Funded by DOE Cooperative Grants
• Managed by the Council of State Governments/Eastern Regional Conference located in Manhattan, NY
Task Force Activities

• Develop and Coordinate transportation policy with the DOE, State Regional Groups, and Tribes

• Receive updates on WIPP, foreign, and commercial spent nuclear fuel shipments
Northeast Task Force

• Hold at least 2 regional group meetings per year
 – One meeting held concurrently at the National Transportation Stakeholders Forum (NTSF) annual meeting

• 2017 NTSF annual meeting held in Pittsburg
• 2018 NTSF annual meeting held in Omaha
• 2019 NTSF annual meeting will be held in Alexandria, Virginia June 10-13
NWPA Section 180(c) Mandate

“The Secretary shall provide technical assistance and funds to States for training for public safety officials of appropriate units of local government and Indian tribes through whose jurisdiction the Secretary plans to transport spent nuclear fuel or high-level radioactive waste [to an NWPA-authorized facility].

• The training shall cover procedures for safe routine transportation of these materials and procedures for dealing with emergency response situations.

• Covers all modes of transport including rail, highway, and barge
SNF Stored in the US

Credit: Nuclear Regulatory Commission
DOE-Office of Nuclear Energy (DOE-NE) has been gathering data from sites as they shut down

• **Preliminary Evaluations of Removing Used Nuclear Fuel from Shutdown Sites** [*DOE Bickford 6/13/18 presentation*]:

 • Includes input from site personnel, local Tribes/states, DOT, and other stakeholders

 • These reports are a first look at how an integrating contractor could recommend going about removing SNF and GTCC waste from these sites

 • The reports represent one contractor’s perspective and do not represent DOE’s plans

 • No “showstopper” technical issues identified among the six sites studied
This map is not intended to indicate that de-inventory reports will be completed for all shutdown sites.
Initial Site-Specific De-Inventory Report for Maine Yankee

RPT-3016127-002

Prepared by: AREVA Federal Services LLC

March 21, 2017
Initial Site-Specific De-inventory Report for Connecticut Yankee

RPT – 3014538-002

Prepared by: AREVA Federal Services LLC

May 5, 2017
Oyster Creek Nuclear Generating Station

Oyster Creek ceased operations on September 17, 2018

Site-Specific De-Inventory Report Planned for May 2019
Spent Fuel will be primarily transported by rail
Spent Fuel Transportation Casks (1 of 2)

<table>
<thead>
<tr>
<th>Model</th>
<th>Diameter</th>
<th>Length</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-STAR HB</td>
<td>128” dia</td>
<td>230.8” long</td>
<td>187,200 lb</td>
</tr>
<tr>
<td>TN-40HT</td>
<td>144” dia</td>
<td>260.9” long</td>
<td>242,343 lb</td>
</tr>
<tr>
<td>TN-40</td>
<td>144” dia</td>
<td>261.0” long</td>
<td>271,500 lb</td>
</tr>
<tr>
<td>TN-32B</td>
<td>144” dia</td>
<td>261.0” long</td>
<td>263,000 lb</td>
</tr>
<tr>
<td>TN-68</td>
<td>144” dia</td>
<td>271.0” long</td>
<td>272,000 lb</td>
</tr>
<tr>
<td>MP197HB</td>
<td>126” dia</td>
<td>271.25” long</td>
<td>303,600 lb</td>
</tr>
<tr>
<td>NAC-UMS</td>
<td>124” dia</td>
<td>273.3” long</td>
<td>255,022 lb</td>
</tr>
<tr>
<td>NAC-STC</td>
<td>128” dia</td>
<td>273.7” long</td>
<td>254,589 lb</td>
</tr>
</tbody>
</table>
Spent Fuel Transportation Casks (2 of 2)

<table>
<thead>
<tr>
<th>Model</th>
<th>Diameter (dia)</th>
<th>Length (long)</th>
<th>Weight (lb)</th>
</tr>
</thead>
<tbody>
<tr>
<td>HI-STAR 60</td>
<td>128"</td>
<td>274.37"</td>
<td>164,000</td>
</tr>
<tr>
<td>MP197</td>
<td>122"</td>
<td>281.25"</td>
<td>265,100</td>
</tr>
<tr>
<td>HI-STAR 180</td>
<td>128"</td>
<td>285.04"</td>
<td>308,647</td>
</tr>
<tr>
<td>HI-STAR 100</td>
<td>128"</td>
<td>307.5"</td>
<td>279,893</td>
</tr>
<tr>
<td>MP187</td>
<td>126.75"</td>
<td>308.0"</td>
<td>312,000</td>
</tr>
<tr>
<td>NAC MAGNATRAN</td>
<td>128"</td>
<td>322.0"</td>
<td>382,746</td>
</tr>
<tr>
<td>HI-STAR 190 SL</td>
<td>128"</td>
<td>339.56"</td>
<td>420,769</td>
</tr>
<tr>
<td>HI-STAR 180</td>
<td>128"</td>
<td>342.4"</td>
<td>285,000</td>
</tr>
<tr>
<td>TS125</td>
<td>143.5"</td>
<td>362.06"</td>
<td>420,769</td>
</tr>
<tr>
<td>HI-STAR 190 XL</td>
<td>128"</td>
<td>385.04"</td>
<td>285,000</td>
</tr>
</tbody>
</table>
The Complete Spent Fuel Train

- Two locomotives
- Buffer railcar
- One or more Atlas railcar(s)
- Buffer railcar
- Rail Escort Vehicle
Atlas Preliminary Design: Attachment System

Cradle Attachment Pin Blocks

End Stop Attachment Pin Blocks
Atlas Preliminary Design: Heaviest Load

Fully Loaded HI-STAR 190XL Cask with Impact Limiters (420,769 lbs.)

End Stop (22,000 lbs.)

End Stop (22,000 lbs.)

Cradle (15,000 lbs.)

Total Load: Approximately 480,000 lbs.
Center of Gravity: 96.08 inches above the top of the rail
Fabrication Photos
Welding Atlas in June 2018
Fabrication Photos
Atlas in September 2018
Fabrication Photos
Buffer Car in September 2018
Fabrication Photos
Rail Escort Vehicle in October 2018
Path Forward

• Ship Atlas and Two Buffer Railcars to the Testing Facility in Colorado
• Perform Phase 4, Single-Car Testing
• Fabricate DOE’s Rail Escort Vehicle
• Perform Phase 5, Multiple-Car Testing
• Conditional Approval from AAR
Summary

• DOE is making steady progress on Atlas, Buffer and Escort Railcars.
 o Fabrication of prototype Atlas and Buffer Railcars is complete.
 o DOE and Navy have agreed on fabrication of DOE’s Rail Escort Vehicle.
 o DOE awarded a contract for the single-car and multiple-car testing program.

• Conditional Approval from AAR is expected in 2022.
Two private companies are pursuing siting and building Consolidated Interim Storage Facilities

◆ Interim Storage Partners, LLC in Andrews County, Texas
 -- NRC application submitted April 28, 2016
 -- Store 40,000 metric tons heavy metal
◆ Holtec International, Lea County, New Mexico
 -- NRC application submitted March 31, 2017
 -- Initial application for 8,680 metric tons heavy metal
Artist Rendering of Proposed WCS Consolidated Interim Storage Facility (CISF)
Source: Waste Control Specialists
Artist Rendering of Proposed Holtec Consolidated Interim Storage Facility (CISF)

Source: Holtec
Consolidated Interim Storage Sites

Priority for Shutdown Sites
NRC Review may be completed by 2020-2021
State’s need 3 to 5 years to train emergency responders
Emergency Response is diminishing as power plants shut down
Questions?