A Physicist Walks on the Dark Side

Karl van Bibber

UC Berkeley Nuclear Engineering
April 24, 2014



Outline

A lightning tour of Cosmology since Newton

A (hopefully) soluble problem — the Dark Matter

The microwave cavity search for axionic dark matter

What next?



From the Big Bang to the Big Game in 60 Minutes




Notion of Stability

: o/

Neutral equilibrium Unstable equilibrium Stable equilibrium




Newton (December 10, 1692):

“...if the matter of our Sun & Planets and the matter of the Universe
was evenly scattered throughout all the heavens, & every particle had
an innate gravity towards all the rest & the whole space through
which this matter was scattered was but finite: the matter on the
outside of this space would by its gravity tend toward all the matter on
the inside & by consequence fall down to the middle of the whole
space & there compose one great spherical mass.”

The scheme might work if a “divine power” intervened to ensure that
the stars “would continue in that posture [spaced at equal distances]
without motion forever.”
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Einstein postcard (c. 1921-1923 from the cost of postage):

“....De Sitter runs two sufficiently separated material points

accelerating apart.

If not a quasi-static world, then away with the Cosmological term.”




“Your calculations are impeccable, but your physical intuition is abominable”
(Einstein to Lemaitre, Solvay Conference 1927)

“It would seem that the most satisfactory theory would be one which made
the beginning not to unaesthetically abrupt” (Sir Arthur Eddington to Lemaitre)



Edwin Hubble
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Einstein's recantation on the Cosmological Constant (A) :
“My greatest blunder!” (c. 1929)
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log(mass fraction)

First experimental validation of the Big Bang Hypothesis:
Primordial Nucleosynthesis (“The first 15 minutes”)

Robert Alpher, Ralph Herman, George Gamaw (late 1940's)
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The Silver Bullet — Cosmic Microwave Background:
The relic radiation from the Big Bang

SPEcTRUM OF THE Cosmic

MicrRowAVE BACKGROUND
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The discovery of the Cosmic Microwave Background (3K)



Click the box to the left to launch
the video in Youtube.

What does it
mean to “see”
Dark Matter?

Let’s peer into the
center of the
galaxy for an
example . ..

...of a very tiny
component of DM



http://youtu.be/r3qSr5HmGkI
elharvey
Text Box
Click the box to the left to launch the video in Youtube.


Fritz Zwicky first confronts evidence for DM in 1930's




Rotation curves of spiral galaxies (Rubin & Ford, 1960’s)
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Our solar system: Spiral galaxies:
What you see = What you got What you see << What you got



Evidence for dark matter on larger scales:
Gravitational lensing by clusters of galaxies

« Cluster mass reconstruction from multiple Reconstructed Cluster
gravitational lensing of background galaxy Mass Distribution
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Two teams of physicists & astronomers tried to ‘weigh’ the total matter in the Universe by
measuring the curvature of the Hubble diagram at large red-shift (= long time ago)
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The universe is accelerating & never coming back? (Who ordered this?)



Type 1a Supernovae as “Standard Candles”

“For any idea that at first does not seem
completely crazy, there is no hope” — A. Einstein

luminosity

Supernovae Cosmology Project & High-Z Redshift Survey




Possible Models of the Expanding Universe

r Decelerating Universes & Coasting Universe Accelerating Universe
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A decelerating universe reaches its current size in the least amount
of time. The universe could eventually contract and collapse into a
"big crunch” or expand indefinitely. A coasting universe (center) is
older than a decelerating universe because it takes more time to
reach its present size, and expands forever. An accelerating universe
(right) is older still. The rate of expansion actually increases because
of a repulsive force that pushes galaxies apart.




The cosmological budget is fairly well determined now

« But we don’t know what either the dark energy or the dark matter is !

» A particle relic from the Big Bang is our best guess for the dark matter
—WIMPs ?

—AXions ?

Other
nonluminous
Dark matter components

(identity unknown) intergalactic gas 3.6%
239, neutrinos 0.1%

supermassive BHs 0.04%

Dark energy
(identity unknown)

73%

Luminous matter
stars and luminous gas 0.4%
radiation 0.005%

P02552-ljr-u-004



How we look for WIMPS (Thousand times the proton mass)

Cryogenic solid state detectors
e.g. SuperCDMS
,.:—:F- - -

—

Sensitive
volume

So far, no sign of such particles

Liquid noble detectors in detectors of several 100 kg
e.g. XENON100, LUX
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WIMP exclusion region - now & projected
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So what is the axion?

Where does it come from?

Why do we need it?

How do we understand it?
Where and how might we find it?

(Then what?)



The axion.

A very small particle accompanying a very Big Bang...




TSP’s* fine-tuning problem

o O e

*Thinking Snookers Player (Pierre Sikivie, Physics Today 49 (1996)22)



TSP’s hypothesis, and first unsuccessful experiment




The key Insight




Ic osclllations

A high-Q search for rel




The Axion

The Strong-CP Problem
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— EXxplicitly CP-violating
* But neutron e.d.m.
ldnl <1025 e - cm
— 0<10-10
— Strong-CP preserving
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The Axion

The Strong-CP Problem

Peccei-Quinn / Weinberg-Wilczek

e Loen= et I GG
acp * 522 O

— EXxplicitly CP-violating
+ But neutron e.d.m.
ldnl <1025 e - cm
— 0<10-10
— Strong-CP preserving
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« Why?

- 0 a dynamical variable

- T =1f; spontaneous symmetry
breaking

61 (x)

- T<1GeV V (6)

TN TN

— 0 dynamically — 0
— Remnant oscillation = Axion




Axion basics (arm-chair science — what you learn for free)
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Good news — Parameter space is bounded
Bad news — All couplings are extraordinarily weak

Light cousin of ©9: J™=0"

Y
a

Couplings o€ Axion mass

Total density oC (mass)_w 6

Axion production quenches
neutrino pulse from SN1987a
if mass too big (~ meV)

Ordinary stellar burning rules
out axions if coupling too big



Why is this hard? Why not just look for an unidentified radio line at which Ey =m,/27?

(from anybody’s halo, ihcluding our own) -

The difficulty is that the spontaneous decay lifetime ~ 1090 sec for m, ~ ueV

( Remember, that’s why it's called “dark matter”!)




But we have a trick up our sleeve ...




The microwave cavity axion search — Your car radio on steroids
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Quantum limited
ADMX UW-LLNL-UCB-UF-NRAO SQUID amplifiers

Nb coil isolated
from washer Nb washer

Field compensation
magnet for SQUIDs

Nb counter
electrode
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ADMX is the world’s quietest spectral receiver
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Dicke Radiometer equation:

s P t

S

n kT \Av

Systematics-limited for signals of 10 W — 103 of DFSZ axion power.
Last signal received from Pioneer 10 (6 billion miles away) ~ 1021 W.




Sample data and candidates

Environmental
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Limits on the axion after twenty years
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ADMX-HF (High Frequency) Yale-Berkeley-Colorado-LLNL

Smaller, Higher-Field, Colder — Aimed at finding the path to higher masses
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Can we make microwave cavities of dramatically higher Q?

We are developing cavities with thin film coatings of Type-lII
superconductors, e.g. Nb, Ti; N by RF plasma deposition




Counts

Thin films of the desired stoichiometry, thickness and transition

temperature have been successfully made — RF cavity prototype is next
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signal in

Josephson Parametric
Amplifiers (JPA)
Konrad Lehnert, JILA/CU

LO phase reference Natural for higher
frequencies
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Are there other ways of searching for the axion?

(Yes, but not very good)



Axion Helioscope: The CERN Axion Solar Telescope (CAST)

Flux [1070 m,(eV)2 cmZsec keV-1]
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Detector
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M. Arik et al., PRL 112 (2013) 091302



The International Axion Observatory (IAXO)

E. Armengaud et al., Letter of Intent to the CERN SPC, August 7, 2013




So when are we going to find the axion?

Recent notable lunar eclipses

Boston Red Sox — 10/27/2004
Boston Bruins — 6/15/2011




Final remarks

The discovery of the identity of Dark Matter within a decade is plausible,
even probable

| will (cautiously) predict that ADMX/ADMX-HF will find evidence for a
predominantly axionic dark matter halo

Should the axionic DM be found, it would open up a unigue Bose quantum
system for study (& axion astronomy?)

We are always looking for a few wild & crazy students who will follow us

But caveat emptor ...

“Problems worthy of attack
Prove their worth by hitting back”
— Piet Hein




The 4% Universe

Dark Matter, Dark Energy
& the Race to Discover
the Rest of Reality

Harcourt, Houghton & Mifflin, 2010

Richard Panek

(See the chapter “The Curse
of the Bambino”, about ADMX)









