INL/MIS-16-40269

Approved for public release; distribution is unlimited.

www.inl.gov

Idaho National

Laboratory

Coordination of Efforts Between Restart, Experimentation and Modeling for the Transient Test Reactor

Mark D. DeHart, PhD Deputy Director for Reactor Physics Modeling and Simulation Nuclear Science and Technology Directorate Idaho National Laboratory

TREAT – The Transient Test Reactor Facility

TREAT – The Transient Test Reactor Facility

Concret

TREAT – The Transient Test Reactor Facility

T Transient rod pair

MK Experiment locations (Note: other experiment

Iocations and configurations possible)

TREAT's mission is to deliver transient energy deposition to a target or targets inside experiment rigs.

FIG. 5. Plot of TREAT reactor power and energy for hypothetical RIA-type transient resulting in 1400-MJ pulse with a 72-msec FWHM capable of depositing 1200 kJ of energy per kg of fuel (290 cal/g).

TREAT Modeling and Simulation

 The INL multi-physics modeling team is supposed to model such experiments in next generation experiment series!

First Experiments

Static Environment Rodlet Transient Test Apparatus (SERTTA)

- General purpose devices <u>without</u> forced convection
- Pre-pressurized and electrically heated
 - Liquid water up to PWR condition (320°C 16 MPa)
 - Inert gas or steam
 - Liquid sodium
- Two SERTTAs are under development
 - 4X capsule "Multi-SERTTA"
 - 1X capsule "Super-SERTTA"
- At present MAMMOTH is the only means available to assess the transient performance of these capsules.

SERTTA shown in TREAT core ³/₄ section view Secondary containment shroud ("can") visible

Multi-SERTTA

• Best for smaller scale specimens and four-for-one testing (concept screening)

Idaho National Laboratory

Planned to be the first new test to be used in restarted TREAT

TWERL

- TREAT Water Environment Recirculating Loop •
- First forced-flow experiment configuration •

Idaho National Laboratory

TREAT Water Environment Recirulating Loop (TWERL)

How TREAT works

- Three sets of control rods:
 - Safety fully out for transient
 - Compensation partially inserted to set critical state pre-transient
 - Transient partially inserted for desired deltak, then rapidly fully withdrawn
- Core is 100 ppm highly enriched uranium – very little resonance absorption.
- As core heats, a shift in the thermal Maxwellian takes the core back to a new critical state; eventually rods are driven in to shut down.
- Temperature distributions (and thus feedback) are spatially distributed.

How MAMMOTH Works

- MAMMOTH has been built using the MOOSE framework (Multi-physics Object Oriented Simulation Environment)
- MOOSE allows implicit, strong, and loose coupling of MOOSE animal solutions
- MAMMOTH is the MOOSE-based multi-physics reactor analysis tool.
- At present, TREAT core simulation efforts rely on BISON (fuel performance), Rattlesnake (time-dependent neutron transport) and MAMMOTH. LWR-type pin experiments are being evaluated using RELAP-7 as well.

- Note that MAMMOTH is a single executable code with multiple personalities all coexisting.
- All codes are based on FEM

 MOOSE routines perform all solutions.
- All data from all codes is available to the solver(s) used.
- Nothing like this exists elsewhere – MAMMOTH is earth-shaking.

Coupled Physics in MAMMOTH

Temperature (K) **↑**

- Reactivity increase (boron removal) between 0.01 and 0.1s
- Reactivity decrease is due to temperature feedback

Thermal Flux ->

Startup Testing Timeline and MAMMOTH

Stakeholder Needs

- Stakeholders refers to the parties with near team interest in TREAT modeling and simulation
 - Restart and operations
 - Reduce operational costs through rigorous pre-experiment analysis
 - Provide more margin for experiments
 - Experiment design
 - Simulation of transients prior to reactor insertion
 - Understanding spatial variations and spectral changes
 - Instrumentation
 - Needs identification
 - Estimate of flux magnitudes and spectra inside and outside core
 - Benchmark Development
 - Support for ongoing NEUP and IRP benchmark development
 - Evaluation for historic transient configurations
 - Department of Energy
 - Nuclear Engineering Advance Modeling and Simulation (NEAMS) investments
 - Understanding of core behavior in licensing review

Modeling and Simulation Needs

- Validation, validation, validation.
- User feedback
- Theoretical improvements
- Did I mention validation?
 - neutronics
 - fuel performance
 - thermal fluids
 - coupled behaviors
- Validation is a circular process
 - We are currently helping to design experiments and vessels
 - Data from those experiments will:
 - Validate the computational simulation or indicate shortcomings that must be addressed.
 - Identify instrumentation deficiencies or new needs
 - Highlight areas for improvement for PIE (methods, equipment, materials)
 - Following experiments will gain from these experiences.

Modeling and Simulation Needs

- Validation, validation, validation.
- User feedback
- Theoretical improvements
- Did I mention validation?
 - neutronics
 - fuel performance
 - thermal fluids
 - coupled behaviors
- Validation is a circular process
 - We are currently helping to design experiments and vessels
 - Data from those experiments will:
 - Validate the computational simulation or indicate shortcomings that must be addressed.
 - Identify instrumentation deficiencies or new needs
 - Highlight areas for improvement for PIE (methods, equipment, materials)
 - Following experiments will gain from these experiences.

Learning to Walk

- This analogy is not all that far off the mark
- TREAT has been idle for 22 years
- We're going to start off crawling first!
- The first tests to be performed in TREAT will be to reproduce the last set of measurements performed in TREAT – the M8 Series Power Calibration Experiment (M8CAL), 1990-1993.
- These measurements will be performed with existing equipment
 - No additional detectors
 - No additional flux/fission wires
 - Existing data acquisition system DAS and Automatic Reactor Control System (ARCS)
 - Wires and foils in test position will be gamma scanned and surveyed for FP inventory
- DOE-ID wants INL to demonstrate that we can reproduce historical data before resuming operations

and the second	and the second se
Integral Fast Reactor Integral Fast Reactor Integral Fast Reactor	The M8 Power Calibration Experiment (M8CAL)
Integral Fast Reactor Integral Fast Reactor	by W. R. Robinson and T. H. Bauer

Idaho National Laboratory

Core Configuration	TREAT Transient Number	Date of TREAT Operation	Control Rod Configuration	Wire Number	Test Train	Identification	Wire Holder	TREAT Energy, MJ	Hodoscope
Full-slotted		10/16/90 10/17/90	В		Fueled	Low-level, steady-state (LLSS) irradiation providing background signal for the hodoscope (NO FUEL)	-	437	Yes
Full-slotted		10/19/90	B	L91-8-10	Unfueled	LLSS	LO3	667	Yes
Full-slotted	2811	10/25/90	В	L91-8-11	Unfueled	Full Heat Balance Transient	LO3	655.4	No
Full-slotted	2812	10/26/90	B	1.91-8-12	Unfueled	Heat Balance Transient (Partial)	L03	404.7	No
Full-slotted	2815	11/14/90	D	L91-8-13	Unfueled	8-s Period Transient	LO3	996.0	Yes
Full-slotted	2816	11/15/90	D	L91-8-14	Unfueled	8-s Period Transient (Partial)	LO3	661.8	No
Half-slotted	-	8/24/92	A	L91-60-1	Unfueled	LLSS	LO3	576	No
Half-slotted	-	8/26/92	A		Fueled	LLSS for hodoscope background signal measurement (NO FUEL)			Yes
Half-slotted	2858	8/31/92	C	L91-8-2	Unfueled	Heat Balance Transient (Partial)	LO3	423.1	No
Half-slotted	2862	9/23/92	С	L91-8-3	Unfueled	Full Heat Balance Transient	LO3	655.0	Yes
Half-slotted	2864	10/14/92	D	L91-8-4	Unfueled	8-s Period Transient	LO3	1868.4	Yes
Half-slotted	2867	10/27/92	D	1.91-8-7	Unfueled	30-s Period Transient	LO3	1956.7	Yes
Half-slotted	2868	10/29/92	C	L91-8-8	Unfueled	30-s Period Transient (Partial)	LO3	1198.6	No
Half-slotted	2869	10/30/92	Ċ	L91-8-9	Unfueled	30-s Period Transient (Partial)	LO3	602.1	No
Half-slotted	2871	11/10/92	D	L91-8-15	Unfueled	30-s Period Transient (with power roll-over)	LO3	1999.8	No
Half-slotted	2873	11/19/92	D	L91-8-5	Unfueled	80-s Period Transient	LO3	1797.8	Yes
Half-slotted		11/20/92	A	L91-8-1	Unfueled	LLSS	L03	576	Yes
Half-sloned	-	1/29/93	Α.	T-433 T-462	Fueled	11.55		480	Yes
Half-slotted		2/8/93	A	1.91-8-6	Unfueled	LLSS	LO3	480	Yes
Half-slotted	***	2/12/93	A	H91-8-1	Unfueled	LLSS	M2CAL	576	No
Half-slotted	2874	2/17/93	D	H91-8-2	Unfueled	8-s Period Transient	M2CAL	1807.1	No
Half-slotted		3/2/93	В	L91-8-16	Unfueled	LLSS	L03	576	Yes
Half-slotted	-	3/5/93	A	H-316 H-307	Fueled	11.55	-	480	Yes

Historical Approach for TREAT Calibration

- Steady state calibration of detectors with experiments to calculate power coupling factor
 - 1. Heat balance measurements (calorimetry) were used to determine steady state power at one or more flux levels.
 - 2. A sample fuel rod(s) was placed within TREAT, and a steady-state test was performed for a set amount of time. The test rig was then removed and the number of fissions/sec/gm determined by destructive analytical chemistry techniques or gamma scan
 - 3. Fission wires of uranium alloy were irradiated at steady state and also assayed to obtain burnup data.
- Transient operation determination of transient coupling correction
 - 4. TREAT would be operated in transient mode with a second set of fission wires with the planned transient
 - 5. Estimation of core power during transient, coupling to experiment in steady state, and transient correction factor.
- Finally the test rig was placed in the test volume within TREAT and the prescribed transient test was performed.
- This process could take a week or more.

Is Modeling and Simulation Even Needed?

- Operations has pointed out (more than once) that they don't need new advanced M&S to restart.
 - True, they can perform operations in exactly the same fashion as was done historically
 - Inefficient, time consuming, limited accuracy, but it worked:
 - 6,604 reactor startups
 - 2,885 transient irradiations
 - No predictive capabilities on fuel performance
 - Science was based on push it until it breaks.

Idaho National Laboratory

Is Modeling and Simulation Even Needed?

- Operations has pointed out (more than once) that they don't need new advanced M&S to restart.
 - True, they can perform operations in exactly the same fashion as was done historically
 - Inefficient, time consuming, limited accuracy, but it worked $\frac{1}{3}$
 - 6,604 reactor startups
 - 2,885 transient irradiations
 - No predictive capabilities on fuel performance
 - Science was based on push it until it breaks.
- The truth is operations doesn't <u>need</u> advanced M&S, but does <u>want</u> these capabilities.
 - Reduce a week's worth of pre-transient testing to perhaps a day.
 - Better quantify the behavior of the full core to reduce conservatisms
 - Tools for experiment, experiment vessel and instrumentation design
 - Increased throughput, better science coming out of measurements.
- DOE want the most bang for the buck on future TREAT operations
 - Increase throughput
 - Better utilization of reactor
 - Improved materials performance knowledge
 - Validation of single- and multi-physics methods

Idaho National Laboratory

Moving Forward on Advanced Modeling and Simulation

- Development of methods to handle cross section challenges
 - 3D effects base cross sections generated using Serpent 2
 - Strong neutron streaming in hodoscope slot
 - Direction-dependent diffusion coefficients using Larsen-Trahan method added to Rattlesnake
 - Strong absorption near control rods
 - Superhomogenization correction
 - Also corrects for vertical leakage through air channels.

Moving Forward on Advanced Modeling and Simulation

- Successful modeling of historical transients from M8CAL measurements with slotted core and in-core calibration vehicle.
 - transient power measurements
 - fission wires

Idaho National Laboratory

Planning for Validation Measurements

- Measurements to support validation from Feb Nov 2018 (~130 working days)
 - 1. Develop Neutron Flux Map of the TREAT Core
 - Flux wires in strategic locations (x, y and z)
 - Fission wires together with flux wires
 - Strategy for wire insertion, removal, tracking, counting
 - 2. Characterize Neutron Spectrum (steady state)
 - Core center/experiment location
 - Performed as a function of temperature
 - Activation of foils with and without filters
 - Use procedure for flux unfolding and code comparison using techniques developed in ATR in 2011-2014
 - Temperature measurements
 - 3. Develop TREAT Core Temperature Profile/Negative Temperature Coefficient
 - Non-trivial only clad temperature is readily measured
 - Thermocouple or infrared, other?
 - 4. Perform Neutron Lifetime and Beta Measurement
 - Noise techniques
 - Oscillation
 - 5. Evaluate new detector technologies (in-core and ex-core)

Planning for Validation Measurements

- For wires and foils, post-irradiation counting will be performed (betas and gamma)
- TREAT currently has no in-house facilities.
- Counting labs are available at the Advanced Test Reactor (20 min. drive) and at the Materials and Fuels Complex (>5 min. drive)
 - Unfortunately, both facilities are being heavily utilized
 - Measurements should be made within 24 hours
- Justification for new counting facilities at TREAT
 - Budget is available
 - Decisions need to be made soon!

Planning for Validation Measurements

- For wires and foils, post-irradiation counting will be performed (betas and gamma)
- TREAT currently has no in-house facilities.
- Counting labs are available at the Advanced Test Reactor (20 min. drive) and at the Materials and Fuels Complex (>5 min. drive)
 - Unfortunately, both facilities are being heavily utilized
 - Measurements should be made within 24 hours
- Justification for new counting facilities at TREAT
 - Budget is available
 - Decisions need to be made soon!
- February 2018 is just around the corner and much remains to be done by all parties!

TREAT Team Leads

- Dan Wachs Transient Testing Lead
- Bruce Nielson Program Manager
- Rob O'Brien ATF-3 Principle Investigator
- Andy Beasley ATF-3 Experiment Manager
- Heng-Ban, Troy Unruh, Darrell Knudson, Josh Daw, Kurt Davis Instrumentation
- Nick Woolstenhulme Test Vehicle Design & Analysis Lead, SERTTA Lead Engineer

ldaho National Laboratory

- Greg Housley TWERL Lead Engineer
- Clint Baker Hot Cell Prep. and Assembly Engineer, Sodium Loop Lead Engineer
- Lance Hone, Nathan Jerred Engineering and Prototyping Support
- John Bess, Connie Hill, Jorge Navarro, Vishal Patel, Cliff Davis MCNP Neutronics
- Colby Jensen, Cliff Davis Thermal Analysis
- Spencer Snow Structural Analysis
- Jim Parry, Lee Nelson, Doug Gerstner TREAT Operation Interfaces
- Mark DeHart Multi-physics Methods Development

Questions?

