The UNM Fission Spectrometer for individual fission fragment identification and correlated gamma-rays

Phoenix Baldez, Mark Wetzel, Adam Hecht

Department of Nuclear Engineering, University of New Mexico

March 23, 2021

ANS Trinity Lightning Talk

UNM SPIDER Detector: E-v

UNM SPIDER Detector: Measuring Particles on the Fly

Measure particle Time of Flight (ToF) \rightarrow ToF = t_2 - $t_1 \rightarrow v$ = I/ToF

Measure particle energy directly \rightarrow Ionization chamber gives E

UNM SPIDER Detector: Extracting Mass (A)

UNM SPIDER Detector: Extracting Charge (Z)

- Active cathode and anode
- Time differences used to determine range
- Range related to Z

Extract N: Knowing A and $Z \rightarrow N$

Time of Flight

A: Source B: Timing signal #1 C: Timing signal #2

Time of Flight

Ionization Chamber

Raw Data with Scatter Removed: ²³⁵U

Mass Yields Without Energy Addback

THE UNIVERSITY of NEW MEXICO

Correcting for Energy Loss

Energy in ToF and IC regions are different, cannot be correlated directly

- 159.4 ug/cm^2 UF₄ Target
- 50 ug/cm^2 Carbon ToF Foils
- 58 ug/cm^2 SiN IC Window

Energy Loss Corrections: Simulations

P. Baldez, S. Fellows, R.E. Blakeley, M. Tanguay, M.L. Wetzel, A.A. Hecht, D. Mayorov, F. Tovesson, J. Winkelbauer, *Measurements of* ²⁵²*Cf fission product energy loss through thin silicon nitride and carbon foils, and comparison with SRIM-2013 and MCNP6.2 simulations*, NIM B 456, 2019.

E loss into IC region E loss into TOF region to calculate v 14 6 $\times \times \times \times \times$ 12 5 $\times \times \times \times \times$ $\times \xrightarrow{\times}$ ٠ 10 4 ٠ ٠ ** 8 MeV MeV 3 ++ 6 E lost SRIM 2 E lost SRIM 4 × E lost MCNP 1 2 × E loss MCNP 0 0 80 70 110 120 130 70 90 100 110 120 130 140 150 160 170 80 90 100 140 150 160 170 **Fragment A** Fragment A

Simulations: SRIM vs. MCNP

Simulations: Mass Yield Comparison

Light 1 AMU = 1/90 = 1.1% FWHM Heavy 1 AMU = 1/140 = 0.7% FWHM

Mass Yield Comparison

For Better Mass Yields

- Need beam calibration
- Suggestions for better simulation for fission product energy loss???

Ionization Chamber and Z determination

Z determination - Active Cathode (> 0.5 MeV/amu)

T. Sanami, M. Hagiwara, T. Oishi, M. Baba, M. Takada, NIM A 589, 2008.

IC Δt cathode vs anode

THE UNIVERSITY of NEW MEXICO

Range & Z

- Active cathode design enables timing measurements
- Determination of penetration depth/range
- *L* is the IC length from C-FG, measured time difference of Cathode-Anode signals,
- v_{dr} =electron drift velocity as a function of E/P conditions

Expected ranges for different nuclides

Calculated range in 0.23 mg/cm³ isobutane

Test calculations with ⁹⁵Sr (90.5 MeV) and ¹³⁴Te (67.0 MeV) in gas to show code differences. Codes not directly useful.

Functional dependence R(Z,A,E) to get Z(R,A,E)

- Perturbations of Z, A, E with respect to the range (R) for average A & Z values for heavy/light peaks.
 - Selected Mean A/Z/E For U-235:
 - light: A= 96, Z=38, E=90 MeV (at entrance to IC)
 - heavy: A=139, Z=53, E=57 MeV
- Relate changes in A, E, and Z to R $R_0+dR = a(A_0+dA) + b(Z_0+dZ) + c(E_0+dE) + d$

Z Yield from Range

Zi(R,A,E)_{Light} = -7.04225*(Ri-8.52)+0.23592*(Ai-96)+0.416197*(Ei-90.563)+0.16507 Zi(R,A,E)_{Heavy} = -22.8311*(Ri-7.41)+.609589*(Ai-139)+ 1.324201*(Ei-57.036)-.39269

Kinetic Energy Dependence

Heavy fragment Z reconstruction too sensitive to small changes in E?

Schmitt data from: H.W. Schmitt, J.H. Neiler, F.J. Walter, Phys. Rev. 141, 1966

Need Calibration

- Have been calibrating using fission E and A curves
- Need good energy calibration of IC
- Calibrate Z with x-ray detector near Cf source
- Hope to calibrate IC energy with beam...

Gamma coincidences

- Have E, v, A, Z, N coincidences. Include gammas
- Recent (July start) NNSA-SSAA grant DE-NA0003901
- New measurements of independent fission fragment yields and energies, and prompt and delayed gammas, for stockpile stewardship data needs

THE UNIVERSITY

Have 3 Ortec GMX 25% HPGe (good around neutrons) and other gamma detectors

Gammas in Coincidence with Well Characterized Individual Particles

Have gammas correlated with individual particles with A, E, v, Z, N data Prompt and quasi-prompt correlated gammas

Fission spectrometer geometric efficiency currently ~10 $^{-4}$

Other methods for much higher fission tagging efficiency...

(~ 1us for IC readout)

Standalone Ionization Chamber for Fission Tagged Gamma Rays

- Fission tagged gammas
- Will have energy information
- Geometric efficiency for fission fragment detection near 1 (some emitted along foil)
- Fission tagged gamma detection limited by gamma detectors
- Build while interacting with LANL, will use LANL sources

Build IC based on Parallel Plate Ionization Chamber (PPIC) for fission tagging, good FF/α discrimination F. Tovesson, T. S. Hill, Phys. Rev. C 75, 034610 (2007).

