

PHOENIX NUCLEAR LABS PROVIDING NUCLEAR TECHNOLOGY FOR THE BETTERMENT OF HUMANITY

Accelerator-Based Neutron Generator to Drive Sub-Critical Isotope Production Systems

> Ross Radel, PhD President, Phoenix Nuclear Labs

PNL Introduction

- > Development stage company in Madison, WI with ~35 employees
- > PNL has developed high yield, gas target neutron generator
- Measured neutron yield of 3x10¹¹ DD n/s
- Fundamental technology combines very high current DC ion source, high voltage electrostatic accelerator, and gaseous deuterium or tritium target
- Multiple fielded systems

Theory of Neutron Production

- Neutrons produced via nuclear fusion reaction
 - > D + D → He-3 + n (2.5 MeV)
 - > D + T → He-4 + n (14.1 MeV)
- > Higher accelerator energy and beam current result in higher neutron yield
- D-T reaction provides more neutrons but requires tritium

Neutron Source Overview

1. Increase primary voltage to 300 kV

2. Ion source creates dense deuterium plasma

3. Accelerator extracts D+ ion

4. Magnetic field focuses ion beam

5. Pumping system keeps gas out of accelerator

6. Beam strikes gas target and generates neutrons

Generation 1 (Army)

- Built on shoestring budget through SBIR program
- Development completed in late 2012
- Used by Army R&D lab to take neutron radiographs of munitions

Generation 2: SHINE

Generation III: Ultra-NCS

Ultra System Operation

- > Measured neutron yields up to 6x10¹⁰ DD n/s
 - > 300kV, 50 mA on target
 - > Equivalent to 4x10¹¹ n/s with gas target
- > Reliable operation for hundreds of hours
 - Most time spent at 275kV, 30mA
 - Extremely stable operation; shutdowns rare

Next Generation – Army Gas Target

Neutron Applications

11

Technology Overlap

Ion Source

Detection 80%+ Imaging Isotopes Solar Cells Accelerator

sotope Production (SHINE)

- PNL spun out SHINE Medical building facility to produce medical isotope molybdenum-99
 - 50,000 imaging procedures per day in US \triangleright
 - Currently supplied by non-US reactors \triangleright
 - Primarily supplied by HEU processes
 - Shortages starting 2018 due to reactor shutdowns
- SHINE facility will use 8 PNL neutron generators
 - DT systems produce 5x10¹³ n/s each
 - Coupled with subcritical LEU assembly
 - Capable of producing two-thirds of US moly-99 demand
 - Fission process ensures access to other isotopes, including I-131 and X-133

Subcritical Assembly

PHOENIX NUCLEAR LABS Providing Nuclear Technology for the Betterment of Humanity

Confidentia may not be **14**

Reactivity and Criticality

- K_{eff} is a measure of reactivity
- K_{eff} = 1 is sustained criticality
- The reactivity of the subcritical assembly decreases with temperature because solution becomes less dense

Start Up With Solution at Room Temperature

Operating Conditions With Solution at 60 C

Facility and Licensing

- Site selected (Janesville, WI)
 - □ Land purchased
 - Directly across from airport
- Construction Permit application submitted to NRC
 - □ Submitted May 31st 2013
 - Includes Environmental Report and Preliminary Safety Analysis
 - Majority of RAI process complete
- Preliminary facility design complete
 - Basis for the safety analysis
 - □ Approximate facility size ~ 55,000 ft²

SHINE Schedule: Production Early 2018

- Resources have been appropriated to risk reduction; however, not doing everything in parallel that could be done
- > Estimated commercial production date now in early 2018

Thermal Neutron Radiography

- Army goal: image every shell with neutrons
 - Defective munitions kill soldiers
 - Army has sought a solution for decades
 - PNL source reduces image time from 20+ hrs to minutes
- Army is developing new Q/A requirements that will use neutrons
- > PNL is on contract with US Army:
 - > First prototype delivered in 2013
 - Contract for commercial prototype awarded in late 2014
 - Army working to create new testing requirements

Propellant Invisible

Propellant Visible

Images taken by US Army with PNL system

18

Commercial Radiography

- Neutrons only viable solution for key components:
 - Turbine blades
 - Composite wing structures
 - Batteries/Fuel Cells
 - Helicopter blades
- Access to neutrons limited to only a few reactor/national lab sites
 - > Must compete for beam time
 - Expensive

19

- Cannot solve real-time problems
- In-house prototype under development

Explosives Detection

PNL neutron source can meet DoD need for standoff IED detection

- > Army funded prototype complete; testing underway
- > Follow-on DoD funding anticipated for next-generation prototype
- > Potential to save thousands of lives annually

Nuclear Material Detection

- Nuclear smuggling: largest-magnitude threat to US Homeland
- > DHS spent \$billions on passive "portal monitors"
 - Cannot detect shielded SNM
 - Neutron cans overcome this problem with active interrogation
- PNL neutron source strength gives unmatched detection sensitivity
- Total market is \$Billions, but depends on DHS adoption

21

Summary

- PNL has developed high yield, gas and solid target neutron generator for several different applications
 - Isotope production
 - > Neutron Radiography
 - > Explosives and SNM detection
- > Measured neutron yield of 3x10¹¹ DD n/s
- Future development efforts underway
 - Increase voltage/current for higher DD yield (5x10¹¹ DD n/s)
 - Further miniaturization of neutron generator
 - > Transition to tritium target (5x10¹³ DT n/s)

Confidentiality statement: This document is the property of Phoenix Nuclear Labs and may not be copied, used, or disclosed for any reason except as authorized by PNL

22

Thank You!

Ross Radel, PhD Phoenix Nuclear Labs

phoenixnuclearlabs.com ross.radel@phoenixnuclearlabs.com 608-210-3060