

Advancements in Nuclear: ANS Northeastern Section Discussion

Ben Holtzman Director, New Nuclear

January 24th, 2024

300+ Members

Nuclear Utilities

EPCs & Suppliers

Fuel Cycle

Decommissioning

National Labs

Investment & Financial Firms

Universities

s La

Law Firms

Consultants

Labor Unions

NGOs & Think Tanks

- Member centric organization
- Diverse, broad membership
- Unique combination of technical, regulatory, and policy capabilities

ŊÊI

Presentation Overview

Nuclear Energy Today
 Global Energy Challenge
 Electricity Generation
 Today

New Nuclear

Future Electric Demand Deployment Plans Licensing Statuses

- Advanced Nuclear Designs
 New Nuclear Designs
 Overview
 Fuel Supply
- Applications

Versatility of New Nuclear -Beyond Grid Scale Electricity

Nuclear Energy Today

TAKE YOUR MARKS, GO!

The Global Energy Challenge

Standard of Living

Carbon Reduction

Energy Security

Source: UNDP, 2006.

NE

Electricity Generation Today

US Commercial Reactors

New Nuclear

THE ENGINE OF TOMORROW

Utility Carbon Emission Projections Based on Pledges

Source: ABB Velocity Suite, U.S. Environmental Protection Agency, utility press releases,

Survey of NEI's U.S. Utilities

Nuclear power's potential role in meeting their company's decarbonization goals:

NEI utility member companies produce nearly half of all US electricity.

Lowest System Cost Achieved by Enabling Large Scale New Nuclear Deployment

Lowest Cost System

Nuclear is 43% of generation (>300 GW of new nuclear)

Wind and solar are 50%

Energy System with Nuclear Constrained

Wind and Solar are 77% of generation

Nuclear is 13% (>60 GW of new nuclear)

Increased cost to customers of \$449 Billion

Both scenarios are successful in reducing electricity grid GHG emissions by over 95% by 2050 and reducing the economy-wide GHG emissions by over 60%

Modeling Forecast – Nominal Case

S VCE Scan to view the complete study.

ŊÊI

Legacy: 491 TWh New: 2,227 TWh

Capacity: 404 Legacy: 67 GW New: 336 GW

Share: 43%

Triangulating New Nuclear Demand – Grid Only

DOE Liftoff Report

Nuclear has a unique value proposition for the net-zero grid

1. Additional applications include clean hydrogen generation, industrial process heat, desalination of water, district heating, off-grid power, and craft propulsion and power

2. Renewables + storage includes renewables coupled with long duration energy storage or renewables coupled with hydrogen storage

Coal Plants and SMR Suitability

Source: ORNL, <u>Evaluation of Suitability of Selected Set of Coal Plant Sites for Repowering with Small</u> <u>Modular Reactors</u>, March 2013

Similar Jobs and Limited Retraining

Coal Plant Position	# Dedicated Coal Positions	SMR Position	# Dedicated SMR Positions	Position Type	Degree of Retraining Required
Operations Supervisor	5	Senior Reactor Operator	5	Supervisor	High
Control Room Operator	10	Reactor Operator	15	Operator	High
Field Operator	15	Non-Licensed Operator	25	Operator	Low
Lab Operator/Chemistry/Scrubber	4	Chem Tech	14	Craft	Medium
Maintenance Supervisor	2	Maintenance Supervisor	3	Supervisor	Medium
Mechanical Craft	12	Mechanical Craft	21	Craft	Low
I&C Craft	9	I&C Craft	10	Craft	Medium
Electrician Craft	5	Electrician Craft	11	Craft	Low
Technician	11	Technician	13	Laborer	Low
Security Officer	20	Security Officer	48	Laborer	Low
Sub-Total	93		165		
All Other Positions	14		72	42 are O&M Support (Planners, Outage, etc.)	Medium
Total On-Site Positions	107		237		
Possible Centralized Positions		33			
Total Positions			270		

Source: NuScale and Scott Madden, Gone with the Steam

ŊÊI

Advanced Nuclear Deployment Plans

State support and projects that may be in operation by early 2030s

©2024 Nuclear Energy Institute Updated 12/19/2023

Advanced Reactor Deployment Plans (1/4) Grid-scale reactors (1/2)

Developer	Utility / User	Location	Size	Target Online
	Standard Power	PA and OH, USA	12 @ 77 MWe (2 plants)	2029
NuScale	KGHM Polska Miedz	Poland	6 @ 77 MWe	2029
	Nuclearelectrica	Romania 6 @ 77 MWe		2028
	OPG	ON, Canada	4 @ 300 MWe	2028
	TVA	TN, USA	4 @ 300 MWe	2032
GEN DVVR A-300	Synthos & Orlen	Poland	300 MWe (>10 plants)	Early 2030s
	SaskPower	Sask., Canada	~300 MWe (4 plants)	2032 to 2042
	TBD	NJ, USA	160 MWe	2030
Holtec SMR-160	TBD	MI, USA	2 x 160 MWe	2032
	Entergy	Gulf Coast, USA	160 MWe	Early 2030s

Advanced Reactor Deployment Plans (2/4) Grid-scale reactors (2/2)

Developer	Utility / User	Location	Size	Target Online
Vaparav	Dow	Texas, USA	4 @ 80MWe	2030
X-energy	Energy Northwest	Washington, USA	80 MWe (up to 12)	2030
TerraPower	Pacific Corp.	Wyoming, USA	345 – 500 MWe	2030
ARC	NB Power	NB, Canada	100 MWe	2030
Moltex	NB Power	NB, Canada	300 MWe	2032
TBD	Duke Energy	NC, USA	TBD	2034
TBD	Purdue/Duke Energy Indiana,		TBD	TBD

Advanced Reactor Deployment Plans (3/4)

Micro-reactors and low scale test reactors (1/2)

Updated 11/16/2023

Developer	Utility / User	Location	Size	Target Online
	Oklo	Idaho, USA	15 MWe	2026
Oklo	Oklo	Ohio, USA	2 @ 15 MWe	2028
	Compass Mining	TBD	TBD (150 MWe total)	TBD
Ultra Safe Nuclear	Global First / OPG	CRL, Canada	5 MWe	2025
	University of Illinois	Illinois, USA	5 MWe	2027
	Sask Research Council	West Canada	5 MWe	2027
Westinghouse	Bruce Power	ON, Canada	5 MWe	2027
	Penn State University	USA	5 MWe	2027

Advanced Reactor Deployment Plans (4/4)

Micro-reactors and low scale test reactors (2/2)

Updated 11/16/2023

Developer	Utility / User	Location	Size	Target Online
Radiant	TBA	Idaho, USA	1.2 MWe	2026
DW/YT	DoD SCO	Idaho, USA	1.5 MWe	2024
DVVAI	Tata Mining Wyoming, USA TBD		TBD	
Kairos Power	Kairos	TN, USA	3 @ 35 MWth	2026
Natura	Abilene Christian University	TX, USA	1 MWth	2025
TBD	Univ. of Missouri	MO, USA	TBD	TBD
TBD	Eielson AFB	Alaska, USA	1 – 10 MWe	2027

North American Customer Interest (1/2)

Utility/Customer		Recent Public Expressions of Interest in SMRs
Dominion	•	2023 Integrated Resource Plan identifies need for up to 4.8 GWe by 2050, first plant online in 2034
Dow	•	Investment in X-energy and deployment of Xe-100 by 2030 for electricity and process heat
Duke	•	Pursuing Early Site Permit in North Carolina, plans for 7.7 GWe between 2032 and 2048
Energy Northwest	•	Considering deployment of advanced reactors
Entergy	•	Plans for SMR-160 by early 2030's
NB Power	٠	Plans for ARC-100 and Moltex MSR by early 2030's
NPPD	•	SMR feasibility and potential site study
NuCor Steel	٠	Investment in NuScale and interest in deployment for electricity
OPG	٠	Submitted Construction Permit application for BWRX-300 at Darlington for operation by 2029
PacifiCorp	•	Deployment of Natrium by 2029, and IRP includes 2 more plants

North American Customer Interest (2/2)

Utility/Customer	Recent Public Expressions of Interest in SMRs
SaskPower	Selected BWRX-300 for future deployment
Standard Power	 Selected NuScale for 2 plants of 12-pack in OH and PA by 2029
TATA Mining	 Working with BWXT for feasibility study for use in Wyoming mining operation
TVA	Construction Permit application for BWRX-300 at Clinch River in late 2023
Universities	Univ. of Illinois, Penn State, Purdue, Abilene Christian University, Univ. of Missouri – Columbia
US Government	Air Force pursuing micro-reactor in Alaska
Others	Dairyland Power, Grant County PUD, Copper Valley, Compass Mining, Sask Research Council,

U.S. Advanced Nuclear Deployment – Europe

\bigcirc

KEY

- National policies to support new nuclear in place
- National policies to support new nuclear under consideration
- U.S. supplier selected for one or more SMR projects
- U.S. supplier selected for one or more large reactor projects
- Near-term commercial opportunity for large and/or SMR projects

Updated 9/1/2023

Advanced Reactor Licensing Progress

Advanced Nuclear Designs

LET'S TALK ABOUT TECH

Types of Advanced Reactors

Range of sizes and features to meet diverse market needs

Molten Salt Reactors

Terrestrial (shown) Several in development

Technology Developers – NEI Members

TerraPower

F

Ν

NUSCALE

KLO

R

Westinghouse

energy °

©2023 Nuclear Energy Institute

G

30

Technology - Coolant Choice

pressure vessel cost

thermodynamic efficiency

GEH BWRX-300

Light-Water SMR

- 350 MWe
- Leverages NRC approved ESBWR
- 7 days of cooling without power or operator actions
- Novel construction techniques
- Designed to be cost competitive with combined cycle natural gas
- Existing fuel design
- Ontario Power Generation plans to deploy around 2028

NÉ

NuScale VOYGR[™] Reactor

Light-Water SMR

- 308 MWe to 924 MWe gross
 - Four to 12 modules 77 MWe each
- Rapidly adjusts power output with individual modules
- NRC completed review of Design Certification – 2020
- Ability to safely shut down and self-cool, indefinitely
- Air cooling for condensers is an option
- Existing fuel design

TerraPower/GEH - Natrium[™] Reactor

ŊÊI

Liquid Sodium Fast Reactor (SFR)

- 345 MWe
 - Molten salt thermal storage for peaking to 500 MWe
- Requires HALEU metallic fuel
- Possible higher temperature, non-electricity applications
- Innovative construction methods
- PacifiCorp plans to deploy around 2028 at Kemmerer, WY – retiring coal facility

X-energy Xe-100

High Temperature Gas Cooled SMR

- 320 MWe
 - 4 modules @ 80 MWe each
- Requires HALEU for TRISO fuel
 - Online Refueling
- Possible high temperature, non-electricity applications
- Dow plans to deploy Dow's industrial Seadrift, TX site for cogeneration around 2027

Kairos Power – Hermes Test Reactor

Molten Salt Cooled SMR

- 35 MWth will not produce electricity
 - Commercial reactor will be 140 MWe
- Molten salt coolant with TRISO fuel pebbles (requires HALEU)
- Possible high temperature, non-electricity applications
- NRC Part 50 construction permit application accepted for review in November 2021
 - Complete review September 2023
- Location: Oak Ridge, Tennessee
 - Operational: 2026

NÉL

Molten Salt Cooled SMR

- Will lay the foundation for Molten Chloride Fast Reactor (MCFR) liquid fueled demonstration reactor
- Confirm key physics phenomena
- INL sited & DOE authorized
- Multi-year cost share partnership with DOE
- Year 5 critical operations

Micro Reactor Technology

Designed to replace Diesel Generators

Ultra Safe Nuclear

Corporation 5 MWe

Westinghouse eVinci™ 5 MWe

BWXT BANR 17 MWe

- **Oklo Aurora** 15 MWe
- Very small size
 - Site as small as 0.1 acres, building ~size of a house
 - Reactor is road shippable, minimal site work
- Resilience withstand, mitigate or quickly recover from
 - Extreme natural events
 - Man-made physical and cyber threats
- Operations
 - Automatic operations, island mode and black-start
 - Flexible hybrid energy and renewables integration

Other Designs (not all inclusive)

NÉI

- General Atomics
- HolosGen
- Hydromine
- NuGen
- NuScale
- Radiant
- X-energy

©2022 Nuclear Energy Institute 39

Oklo Aurora

- Heat and electricity
- Sodium Fast Reactor
- Metallic HALEU fuel
- 15 MWe
- 10+ years before refueling
- Demonstration at Idaho National Lab around 2026

Westinghouse eVinci[™]

- Heat and electricity
- 1-5 MWe
- Heat pipe cooled
- 8+ years before refueling
- Fully factory built, fueled and assembled
- Target less than 30 days onsite installation
- TRISO Fuel
- Multi-year cost share partnership
 DOE portion \$7.4 million

Key Enabling Tech – TRISO Fuel

Pebble

Porous Carbon Buffer

Pyrolytic Carbon Silicon Carbide

Particles

Uranium Dioxide or Oxycarbide Kernel

Compacts

Fuel Element

TRISO-coated fuel particles (left) are formed into fuel compacts (center) and inserted into graphite fuel elements (right) for the prismatic reactor

08-GA50711-01-B1

- Provides containment and can withstand temperatures well above accident conditions
- Higher operating temperatures more efficient
- On-line refueling possible
- Passive decay heat removal

Challenges to Establishing Future Front End Fuel Cycle

- Technology is not the problem
- Market development and infrastructure investment (enrichment and transportation) is the challenge

HALEU for Industry – Two Uses

ŊÊI

- Existing fleet
 - Between 5% and 10%
 - Extending burnup and time between outages
 - Confident in pathway for enrichment and transportation
- Advanced reactors
 - Between 10% and 20%
 - Needed by most but not all advanced non-LWR reactors and some advanced fuels for existing fleet
 - Enrichment, deconversion, and transportation challenges

Industry Needs Reported in 2021

- Letter to Secretary Granholm
 December 20, 2021
- Values in MTU
- Current fleet uses about 2000 MTU/year
- Data from ten companies
- Does not include enrichments below 10% for LWR fleet
- Not all ARs or advanced fuels
 need HALEU

Year	Annual	Cumulative
2023	7.7	9.5
2024	18.0	27.5
2025	25.8	53.3
2026	72.1	125.4
2027	78.7	204.1
2028	130.8	334.9
2029	151.7	486.6
2030	215.0	701.6
2031	252.3	954.0
2032	375.3	1329.2
2033	454.2	1783.4
2034	527.1	2310.5
2035	613.8	2924.3

NE

Russian Reliance – A Dangerous Game

Applications

A DEPLOYMENT STORY: GRID SCALE ELECTRICITY AND MORE

Advanced Nuclear Versatility

new nuclear.

New Market Opportunities

DoD Pursuit of Micro-Reactors

Movable Project Pele

<u>Fixed</u> Eielson Air Force Base

https://www.eielson.af.mil/microreactor/

Shipboard Reactors

- Reactors are used by various navies but not used for commercial shipping
- Russia commissioned a barge with two pressurized water reactors 35 MWe each
- Other shipboard reactors designs
 - Seaborg molten salt 200-800 MWe
 - Core Power working with TerraPower and Southern Company – molten salt fast reactor
 - Prodigy Clean Energy working with NuScale – pressurized water reactor
 - Thorcon molten salt thorium reactor two 250 MWe reactors

Hydrogen Generation Using Existing Reactor Fleet

- Constellation, Energy Harbor, Xcel Energy, and Arizona Public Service have received DOE awards
- Will demonstrate hydrogen production from large light water reactors
- Hydrogen could be used for transportation, industrial processes, storage medium for electricity production

NÉL

Where is District Energy Used?

- Airports
- Higher Education
- Cities
- Government Facilities
- Healthcare Facilities
- Military Facilities
- Manufacturing Facilities

District Energy Has Been Used for Nearly 150 Years Globally

Current use of Nuclear for District Heating

Source: Joseph Technology Corp.

- ~ 43 nuclear reactors provide combined heat and power for district energy
- 10% of nuclear power reactors in operation worldwide
- Hot water can be economically delivered up to 100 km away

Process Heat Temperature Applications

US Energy Flow (2021): 97.3 Quads

Source: LUNE March, 2022. Data is based on DEX/EIA MER (2021). If this information or a reproduction of it is used, oredit must be given to the Lawrence Hivemore National Laboratory and the Department of Energy, under whose supplices the work was performed. Distributed electricity represents only retail electricity splices and does not include self-generation. EX reports consumption of rememble resources (i.e., hydro, wind, genthemal and solar) for electricity in ETU-equivalent values by assuming a typical fossil fuel plant heat rate. The efficiency of electricity production is a collulated as the total retail electricity delivered divided by the primary energy input into electricity generation. EX due set ficiency is estimated as 65% for the residential sector, 65% for the commercial sector, 21% for the transportation sector and 49% for the industrial sector, which was updated in 2017 to reflect DDV's analysis of manifecturing. Totale may not equal us on of components due to independent rounding. LAM-M1401527 NÉI

Advanced Nuclear Technologies*

* - partial list of technologies

Thank You for Your Time and Attention