Development of TerraPower's Molten Chloride Fast Reactor (MCFR) to enable low-cost, economy-wide decarbonization

Brandon M. Chisholm, PhD R&D Engineer, Southern Company Services

21 May 2021

Acronym List

DOE Awards

- ARC: Advanced Reactor Concepts
- ARDP: Advanced Reactor Demonstration Program
- Technology (general)
 - MCFR: Molten Chloride Fast Reactor
 - SETs: Separate Effects Tests
- Technology (specific)
 - MCFR-CR: MCFR Commercial Reactor
 - MCFR-D: MCFR Demonstration Reactor
 - MCRE: Molten Chloride Reactor Experiment (critical)
 - IET: Integrated Effects Test (non-critical)
 - MaSTiF: Molten Salt Test Facility (non-critical)

Southern Company provides clean, safe, reliable, affordable energy and customized solutions.

Develop and demonstrate high potential advanced nuclear options that can provide the best value to the company & customers

RIGHT TECHNOLOGY

- → provide the backbone of a net zero economy clean electricity, heat, hydrogen
- → address safety & sustainability

RIGHT TIMELINE

- → support decarbonization commitments & demands
- → replace potential retirements

RIGHT COST

→ competitive with ngcc+pcc and solar+battery

BEST VALUE

- → grow revenue in a rate neutral way
- → be options positive expand the market past electricity

SCS R&D performed a rigorous advanced reactor evaluation.

			GEN IV		
REACTOR TYPE →	aLWR	SFR	HTGR	FHR	MSR
high temperature					
low pressure					
online refueling					
potential for breeding					
compact size					
liquid fuel					
complete walkaway safety					

TerraPower's Molten Chloride Fast Reactor (MCFR) selected as a high potential option worth pursuing

OPPORTUNITIES

BROAD APPLICATION

- high-grade heat
- load following or 24/7
- flexible capacity

SUPERIOR OPERATION

- inherent & passive safety
- resilient

SUSTAINABILITY

- low used fuel yields
- high power density

GAPS

EXPERIENCE BASE

- MSRE built in 1960s
- · rebuilding national infrastructure
- leveraging other industries

REGULATION

- prescriptive, LWR-centric
- leverage advanced reactor benefits

SUPPLY CHAIN

- FOAK components
- new fuel type

TerraPower was established by visionary investors and led by Bill Gates. All forms of energy were initially considered— carbon-free, scalability and energy density considerations led TerraPower to innovate in nuclear energy.

technology inclusive content of application

affirmative safety case right-sized application

licensing modernization project

risk-informed, performance-based recognize benefits of advanced reactors endorsed by NRC

"part 53"

new licensing pathway flexible, predictable framework

advanced reactor fuel

domestic HALEU production

thermal energy storage

bulk storage high-grade heat

small-scale electric

90-360 mw_{th} applications

maritime transportation

enables efficient manufacturing

efficient hydrogen

thermally-driven and enhanced processes

cost-effective, carbon-free energy

360-720 mw_{th} applications enables up to 1800 mw_{th}

2015 2020 2025 2030 2035

separate & integrated effects tests

hardware focus salts + materials management integrated systems

at-scale component operation

demo reactor scale components remote maintenance equipment end-user operations

demonstration reactor

modular approach NRC licensed 180 mw_{th} full power operation

full commercial operations

critical experiments

first fast salt criticality in the world nuclear data needs leverage lab infrastructure

Advanced Reactor Concepts (ARC) Award – SETs & IET

Rebuilding lost infrastructure for high potential technology

→ \$76M total project, 60/40 cost share

SEPARATE EFFECTS TESTS

- → microloops for salts and materials compatibility including uranium chloride salt
- → isothermal loop world's largest pumped chloride salt system

INTEGRATED EFFECTS TEST

- → <1 mw electrically heated, multi-loop system
- \rightarrow salt handling including salt production, loading, and unloading
- → new salt pump development
- → freeze valve design, development, and testing

Advanced Reactor Demonstration Program (ARDP) – Molten Chloride Reactor Experiment (MCRE)

Gathering reactor physics data with the world's first fast chloride salt reactor

- → \$113M total project, 80/20 cost share
- → HEU-fueled critical experiment, low power operation
- → year 5 operation
- → INL sited & DOE authorized

Molten Salt Test Facility (MaSTiF)

Product-scale component operation and integrated remote maintenance

- → thermal hydraulics & component reliability data/confirmation
- → demo reactor component scales
- → remote handling and maintenance
- → hands-on end-user operations experience

Generic MCFR Flow Diagram

MCFR Fuel Cycle

MCFR-CR Plant High Level Summary

Parameter Name	MCFR Commercial		
Power Output	800 MWe		
Net Efficiency	44%		
Power Cycle	Super-critical Steam		
Reactor Vessel Structural Material	SS316		
In-vessel Parallel Legs	8		
Primary Cooling System Loops	4		
Primary Cooling Fluid	NaCl-MgCl ₂		
Secondary Cooling System Loops	4		
Secondary Cooling Fluid	Solar / Nitrate Salt		

